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Three models of a vortex tube (isentropic, isothermal, and iso- 
choric) are considered as optical inhomogeneities. Expressions 
relating the index of refraction to the coordinate are obtained. 
The possibility of obtaining Schlieren pictures of such flows is 
discussed. 

In e x p e r i m e n t a l  work involving vor tex  flow it is 
s o m e t i m e s  poss ib le  to use  shadow or i n t e r f e r ence  
methods,  by means  of which one can m e a s u r e  the 
d i s t r ibu t ion  of the index of r e f r ac t ion  in  the flow 
field and use that  d i s t r ibu t ion  to ca lcula te  the d i s -  
t r ibu t ions  of other  v a r i a b l e s  [1]. 

A vor tex  is  a s soc ia t ed  with a p r e s s u r e  change, 
which is a funct ion of the pa r t i c l e  ve loc i ty  [2]. The 
p r e s s u r e  change is accompanied  by a change of 
densi ty ,  and the l a t t e r  is uniquely re la ted  to the in -  
dex of r e f rac t ion .  Consequent ly ,  a vor tex  is a s s o c -  
iated with a f ield of va ry ing  index of r e f r ac t ion  and 
can, in p r inc ip le ,  produce a shadow or i n t e r f e r ence  
image.  

Under  d i f ferent  condit ions there  appear  vo r t i ce s  
of d i f ferent  types,  depending on the t he rmodyna mi c  
p rocess  which takes  place.  In this work we sha l l  
cons ide r  th ree  models  of a vor tex  tube: i s en t rop ic ,  
i so the rma l ,  and i sochor ic .  

Cons ider  a v e r t i c a l  vor tex  tube in an ideal  fluid, 
with a core of rad ius  r 0 ins ide  which the fluid is  in 
so l id -body  ro ta t ion  

v = o~ r .  (1) 

In t roduc ing  the d i me ns i on l e s s  p r e s s u r e  ~ = p / p ~  
and the d i m e n s i o n l e s s  dens i ty -p  = p/p~ ,  and us ing  
(1)-(4),  we reduce  E u l e r ' s  and B e r n o u l l i ' s  equat ions  
to the form 

1 
dp = const, (7) ? 

In both cases  

We sha l l  now cons ide r  the th ree  models  of vor tex  
flow a s s u m i n g  that the above ve loc i ty  f ield ex is t s  
in al l  th ree  cases ,  and shal l  ca lcu la te  the p r e s s u r e ,  
densi ty ,  and t e m p e r a t u r e  fields.  

Cons ider ,  for  example ,  an i s en t rop ic  vortex.  Us -  
ing the d i me ns i on l e s s  va r i a b l e s  in t roduced  above, we 
r e p r e s e n t  the Po i s son  equat ion 

p/p~ =(p/p~)~ 

in the d i me ns i on l e s s  fo rm 

x 

p = e . ( 9 )  

Subst i tu t ing (9) in (7) and (8), we obtain 

The core induces in the surrounding fluid a flow 

with velocity 

v = ~ r0~/r. (2) 

In t roduc ing  the d i m e n s i o n l e s s  r a d i u s  ~- = r / r  0 and 
d imens ion l e s s  ve loc i ty  ~" = v/cor0, we can r ewr i t e  
(1) and (2) in the fo rm 

for r _< r0, and 

1~2 1 ~ - I  - -  - -  p = const (10) 
x - - 1  

kv2 + 1 _~-i p = const (11) 
74--1 

v = r  for Y~-ro, (3) 

V=--=-I for r > r o ,  (4) 

which c l ea r l y  shows the dependence of ~ on ~.  
Ins ide  the core ,  where  the flow is ro ta t ional ,  the 

p r e s s u r e  and the dens i ty  a re  re la ted  to the ve loc i ty  
by E u l e r ' s  equat ion of mot ion  

v~_~ = .  1 d___pp (5) 
r 9 dr 

Outside the core,  where the flow is  potential ,  we can 
use Bernoull iTs equat ion 

(6) v ~ ~ dp 
+ - -  = const. 

P 

for r >_ r 0. The value of the constant  in (10) is d e t e r -  
mined  by the boundary  condit ions at the core boun-  

da ry  (~ = 1, ~ = ~0), 

-- 74---i p = k (12) 
-- 74-- 1 p~ 

To de t e r mi ne  the constant  in (11), we use the con-  
di t ions at inf ini ty,  ~ = 1 / ~  = 0, ~ = 1. This  yields  

/~2 + _ _ 1  _~-1 = _ _ 1  (13) 

•  p •  

Equat ion (13) r e p r e s e n t s  the r e l a t ion  between the 
d i me ns i on l e s s  dens i ty  and d i me ns i on l e s s  veloci ty  
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The Var ia t ion  of ~, ~, and "~ with ~" for Var ious  Vortex Models 

Inside the core (~'=r--) Outside the core (b-'=1/7) 

Isentropic vortex 

~-= [ l  + k (.,._ i) (7 ~ _ 2)Itm--~ ~-= 11 _ k (-,. _ i)/7~I~;("-~ 

~-= [ 1 + k (.t. _ i) (r2 _ ,;,)I"/(".-') -~= [l - -k  (-,._ i)/;21~/( ~-I ) 

~= i +~ (~-- I) (70" -- 2) ~ = I --~(~-- I)r 2 

~ =  exp [k x [r = - -  2)] 
-2 

p =  e x p [ k x  (r -- 2)1 

~ = 1  

7= i+ k-~ ~" - 2 )  

f =  l +  k , . (V-2)  

Isothermal vortex 

I s o c h o r i c  vortex 

--2 
~ =  exp ( - -  k x/r ) 

p = e x p ( - - k x / r  ) 

T = I  

p-= 1 - -  k x/7 ~ 

7 = 1 -- k "~/r 2 

(or coordinate)  outside the vor tex c o r e .  At the core 
boundary  equation (13) becomes  

1 _ ~ - i  1 
.~- - - - -  ko 

x - - I  p~ ~r 

Using this expression, we can eliminate the term 
with ~ from (12), and thus obtain a relation between 
the dimensionless density and the dimensionless 
velocity (or coordinate) inside the vortex core: 

x--I  _o 
p =l+k(z-- l)(d--2). 

In an i s en t rop ic  p rocess  the p r e s s u r e  and the 
t empera tu re  a re  re la ted  as 

p/p~ = ( T / T , )  "/(~-'~, 

or,  in d imens ion le s s  form,  

_x/(-,--I) 
p = T  (14) 

Taking account of this r e la t ion  and of equation (9), 
we can obtain the d i s t r ibu t ion  of the d imens ion l e s s  
p r e s s u r e  or t e m p e r a t u r e  as a function oi ~ or  r .  

In the case of the i s o t h e r m a l  or  i sochor ic  vo r t i ces ,  
ins tead of the Po i s son  equation we use the Clapeyron 

equation 

p = p R T ,  

or,  in d imens ion l e s s  form,  

p = ~ ' .  

In the i s o t h e r m a l  case  {" = 1 and 

p ~ p ,  

whereas  in the i sochor ic  case p-= 1 and 

(15) 

p ---- T. (16) 

Proceed ing  as before ,  we can use (15) or (16) to 
der ive  all  the n e c e s s a r y  re la t ions  f rom (7), (8). The 

re su l t s  a re  col lected in the table,  together  with 
the r e su l t s  for the i s en t rop ic  vortex.  

Now, us ing  the expres s ions  for the dens i ty  as a 
function of the coordinate ,  one can eas i ly  der ive  the 
exp res s ion  for the index of r e f r ac t ion  as a function 
of the coordinate .  The connect ing re la t ion  is the Glad- 

s tone-Dale  equation [3] 

p/p~ = ( n -  1)/(n~ - -  1). 

Denoting the r ight  side by fi, we rewr i te  this equation 

in the form 

p = n .  

Now it is c l e a r  that the va r i a t ion  of the quant i ty  
(n - 1)/(n~o - 1) is exact ly  the same  as that of the 

d imens ion l e s s  densi ty ,  i .e . ,  in the i sochor ic  case 
is constant  everywhere ,  in the i sen t rop ic  case it  is 

li 
l +k(x--  I) (r2--2)l '/('-') for r--< l, 

~] 1/(~-I} 
-- l - - k ( •  for  r > l  

and in the i so the rma l  case it is 

n = 

_2 
exp [ k •  for  r . ~ l ,  

exp - - k •  for  r;.> 1 

(17) 

The index of r e f r ac t ion  reaches  i ts  m i n i m u m  value 
at the cen te r  of the vortex.  Denoting this value by 
tic (fi = fie at ~ = 0), we find in the i sen t rop ic  case  

nc = [1 - -2k  ( •  l)] ':(~-t~, (18) 

and in the i so the rma l  case 

nc = exp (-- 2k • (19) 

Thus, ~ varies between 1 and the value given by (18) 
or (19). 
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Clear ly ,  an optical  i n s t r u m e n t  can "see"  such a 
two-d imens iona l  vor tex  only if the difference 1 - tic 
is suff ic ieht ly  large ,  i .e . ,  l a r g e r  than the sens i t i v i ty  
threshold  of the i n s t rumen t .  In the i sen t rop ic  case  

1 --TZc = 1 - -  [1 --2k(v. --  1)l t''('-t) (20) 

In our  case 

On On x On On y 

Ox Or r Oy Or r 

and, s ince  an/Or,  x / r ,  and y / r  a re  independent of z, 
we have 

and in the i so the rma l  case 

l - - n  c =  l - - e x p ( - - 2 k x ) .  (21) 

F r o m  (20) and (21) it is c l ea r  that these  di f fer-  
ences  are  de t e rmined  by the values  of x and k = 
= w2r~/2~lRT oo. Consequent ly ,  we can cons t ruc t  graphs 

of 1 - nc as a function of x, T~,  r 0. Clear ly ,  the 
difference 1 - tic depends on ~ only in the i sen t rop ic  
case.  This  dependence is shown in Fig.  la .  
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Fig. 1. 1 - ffc as a function of (a) x, (b) Too, (c) wr 0. 
1) i sen t rop ic  vortex; 2) i so the rma l  vortex..  

It appears  f rom the graphs in Fig. 1 {these were 
cons t ructed  for the case a = 342.4 m / s e c ,  x = 1.4, 
wr 0 = 0.5a) that it is e a s i e r  to obtain a shadow or  
in t e r f e rence  image of the vor tex in  the case of a 
cold gas with low ra t io  of specif ic  heats  and high 
veloci ty at the core boundary.  Also,  an i so the rma l  
vor tex will be e a s i e r  to v i sua l ize  than an i sen t rop ic  
vortex.  

The above fo rmulas  allow us to explore  the pos-  
s ib i l i ty  of us ing optical  methods to v i sua l ize  vortex 
flows under  va r ious  expe r imen ta l  condit ions.  

Assume ,  for example ,  that we observe  a sec t ion  
of a hor izonta l  r e c t i l i n e a r  i sen t rop lc  vor tex  tube, 
bounded by the two n o r m a l  sec t ions  A and B. Let 
the or ig in  of the coordinate  sys t em lie in A, and let  
the z axis coincide with the tube axis ,  which is h o r -  
izontal .  We throw a pa ra l l e l  beam of l ight in the z 
di rect ion.  

The sec t ion  under  cons idera t ion  const i tu tes  an 
opt ical  inhomogenei ty  with a cy l indr ica l  field of the 
index of r e f rac t ion .  The values  n, dn/dx ,  and dn /dy  
are  constant  along s t r a igh t  l ines  pa ra l l e l  to the z 
axis [1]. The theory  shows that in this case the de-  
f lect ions e x and s of the light beam in the x and y 
d i rec t ions ,  r espec t ive ly ,  a re  given by 

O e~ 1 On 
+ 

Oz no. Ox 

Oe u _ ! On 

Oz n .  8y 

1 On y e x =  1 On x Az,  ey Az. 
n ~  Or r n � 9  Or r 

The deflect ion of the beam in the radia l  d i rec t ion  is 

A z On (22) 
x -  y n ~  Or 

where &z is the d is tance  between the sec t ions  A and 
B. This deflect ion i n c r e a s e s  with i nc reas ing  Az and 
8n /a r .  

Using (17), we have for the case of the i sen t rop ic  
vor tex 

On - ~ - ~  

2 k ( n , ~ - - l ) r  [1 + k ( x - -  1)(r2--2)] (2-~)'r(x-l) for r .~  1 
r0 

and 

O n  

Or 

_ 2k(n| ~- 1) I 1 - - k ( •  I "1 (-~-'~,'('-'> I>Tj  for ; >  l 

At the core center ,  as well as at infinity,  On/~r = 0. 
At the core boundary  (~ = 1) the value of ~ n / a r  is ,  
in both cases ,  

( O n )  - 2 k ( n ' -  1) [ 1 _ k ( •  (23) 
0 T'O 

It can be eas i ly  seen  that (23) r ep re sen t s  the maxi -  
mum value of a n / a r .  Subst i tut ing this in (22), we ob- 
ta in  the max imum value of the radia l  deflect ion of 
the beam 

Co= 
2 k ( n |  I)Az 

F 0 n ~  
[ I - - k ( x -  l)l(2-'>'('-tl. 

Fo r  noo = 1.000272, wr 0 = 0.5aoo, co = 1000 cycles ,  a = 
= 342 m/sec  and AZ = 0. 01 m we obtain 

eo = 3.5. lO--* rad,  

which is not too far  f rom the sens i t iv i ty  threshold  
of a we l l -ad jus ted  "IAB" ins t rumen t .  The longer  the 
sect ion of the vor tex tube, the e a s i e r  it would be to 
observe  the vor tex by optical  methods.  However, the 
bas ic  factor  which governs  the va r i a t ion  of the index 
of r e f rac t ion  in the vortex,  is the quanti ty wr 0. When 
this quanti ty is too s m a l l  as compared  with the speed 
of sound, the i n s t r u m e n t  will be unable  to r e g i s t e r  
t h e  flow. There fo re ,  the use of optical  methods for 
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the measurement  of vort ices would make sense only 
in high-speed gas flows. 

NOTATION 

a - speed  of sound; n- index of refraction; p -p re s su re ;  
r - r ad ius ;  T-absolu te  temperature;  v - l inea r  velocity; 
e -angular  deflection of the beam; x-adiabat ic  expon- 
ent; p--density; w-angular  velocity; ~7, ~ e t c . -d imen-  
sionless parameters ;  v 0, P0-values at the core boun- 
boundary; Poo, P~o e tc . -s tagnat ion values; nc- index 
of refract ion at center of vortex. 
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